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This paper is devoted to the development and investigation of methods of mathematical and computer simulation of 
the process of fluid filtration in a porous medium. The methods of numerical solution of the problems of the filtration 
theory of build-up of conditions in the catchment and discharge areas boundaries, identification of filtration-capacitive 
parameters of the effective formation and determination of free (unknown) boundaries and creation of computational 
algorithms for analysis and forecast of technological indicators of oil and gas fields are considered. Methods and 
models of continum mechanics, filtration theories, and methods for solving ill-defined problems, numerical modeling 
and computer programming were used. Approximate Numerical methods for solving direct and inverse problems of 
filtration theory, mathematical models for single-phase isothermal filtration of a gas mixture in a horizontal formation 
at small concentration gradients of components, studying the properties of self-similar solutions, as well as numerical 
solving the problem of identifying the capacitive parameters of the water-bearing stratum. 

Key words: filtration, water-drive, basin, saturation, oil and gas deposits, catchment area, discharge area, filtration 
parameter, differential equation

98*sciencewellspring@gmail.com

INTRODUCTION

Oil and gas deposits are confined to formation water-drive 
systems. In this case, a natural filtrational flow of water 
usually takes place.  The features of the geological struc-
ture of the water-bearing stratum, the change in the area 
of collecting properties, the presence both catchment 
area and discharge area has a significant effect on the 
degree of manifestation of the water-drive regime. These 
factors determine the nature of the interference of the 
wells, uncontrolled movements of gas or oil, etc.
In recent years, more and more attention has been paid 
to studying the effect of natural (or artificially created) 
filtrational flow of water on the configuration of gas-water, 
water-oil contacts. A special role belongs to the natural 
filtrational flows and the conservation of gas and oil de-
posits in hydrodynamic traps.
The opposite problem turns out to be significant: estab-
lishing, for example, conditions in the catchment and 
discharge areas, as well as identifying the filtration- ca-
pacitive parameters that led to the displacement of the 
hydrocarbon deposits in the stream of the formation wa-
ter or the presence of the deposits in the hydrodynamic 
trap.
Suppose a gas deposit is confined to a hydrodynamic 
trap. It is required to predict its behavior in the process 
of development and the manifestation of the water-drive 
regime. This means that it is necessary to set the initial 
condition in the form of the initial distribution of pressure 
in the water-bearing stratum, hence the pressure in the 
catchment and discharge areas boundaries. It turns out 
that the problem arises here of the inconsistency of the 
initial condition with the real gas deposit. Thus, if the ini-
tial condition is incorrectly specified for gas sampling, for 
example, with infinitely small rates, a significant defor-

mation of the gas-water contact may occur, which con-
tradicts the physics of the process.
Elimination of such misunderstandings leads to the need 
for numerical identification of the parameters of the wa-
ter-drive basin. This task is very multifaceted. Let us 
consider only the problem of build-up of pressures in the 
catchment and discharge areas, as well as identifying 
the filtration parameters of the water-bearing stratum.
Even this, one of the simplest tasks, is characterized by a 
number of difficulties. First, the location of the catchment 
and discharge areas is not always known with certainty. 
Secondly, it is difficult to indicate the outer boundaries 
of the water-bearing stratum. Thirdly, many features of 
the geological structure of the basin under consideration 
are not clear. Therefore, it is necessary to talk about the 
creation of an equivalent computed model of the wa-
ter-bearing stratum for a given deposit.
A part of the water-bearing stratum is allocated around 
the deposit, possibly, along which there is a certain 
amount of initial information.
This means that, with some degree of conventionality, 
certain formation boundaries are characterized as impen-
etrable and the catchment and discharge areas boundar-
ies are distinguished. There are (basically approximate) 
maps of equal values of the coefficient of permeability k 
and the formation thickness h. We also have the values 
of pressures and filtration parameters in a series of ex-
ploratory or piezometric wells, including at the deposit 
boundary prior to its development. Often, the pressure 
on the catchment and discharge areas is unknown, as 
well as the actual distribution of the filtration parameter. 
Therefore, the following inverse problem is relevant. It is 
required to find such pressures in the selected catchment 
area P*n  and discharge area P*p boundaries, as well as 
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the actual distribution of the filtration parameter bф(x, y),  
which predetermined the observed values of pressures 
and filtration parameters at different points in the wa-
ter-bearing stratum and the established configuration of 
the gas deposit.

LITERATURE REVIEW

This also determines the relevance of the scientific re-
search devoted to solving the problems of identifying of 
the filtration-capacitive parameters and establishing con-
ditions in the catchment and discharge areas boundaries 
of the water-bearing stratum.
Inverse problems for formation system are in most cas-
es incorrect. They are characterized by instability in the 
initial data, expressed in the fact that small variations 
in the initial data can cause significant variations in the 
solution. The foundations of the theory of the approxi-
mate solution of ill-defined problems are laid down in the 
works of A.N. Tikhonov [1].
Basic principles for solving ill-defined problems are de-
veloped by A.N. Tikhonov [1], M.M. Lavrentyev [2], G.I. 
Marchuk [3], V.G. Romanov [4] et al.
First applied to the inverse problems of the filtration the-
ory in the works of W.H. Chen, K. Coats, G.R. Gavalas, 
J.H. Seinfeld, M.L. Wabermann a variational approach is 
described.
At present, algorithms for solving inverse two- and 
three-dimensional, single- and multi-phase problems of 
filtration theory have been created, which on an impartial 
basis allow refining the collecting properties of the pro-
ductive stratum with the use of actual development data. 
For these purposes, the time dependences of flowrates 
of liquid, gas and formation pressures on wells are need-
ed. Practically there are no similar studies for stationary 
filtration formations. 
A wide range of studies devoted to the solution of the 
problem of identification of formation parameters in two 
and three-dimensional cases for single-phase and mul-
tiphase filtration are presented in the works of Yu.K. 
Alexeev [5], D.M. Akhmetzyanov [6,7], V.Z. Baishev [8], 
V.Ya. Bulygin [9], A. Zholdasov[10], B.M. Palatnik [11, 12] 
and other authors .
For the first time, methods for refining the collecting prop-
erties of the formation were based on conducting of re-
search of individual wells with established and unsteady 
filtration regimes. In the first case, the indicator lines (dia-
grams) were removed from the wells, in the second case, 
the curves, the coefficients of the filtration resistances in 
the equation of the flow of gas (liquid) to the well in case 
of violation of the linear filtration law (Darcy's law), the 
hydraulic conductivity parameter, and the coefficient of 
the formation-pressure conductivity. This means that on 
the basis of special well studies, when interpreting the 
obtained results, the parameters related to the individual 
wells have been refined.
In recent years, the progress made in the formulation 

and solution of inverse problems, allows to solve multi-
dimensional inverse problems of the theory of develop-
ment of oil and gas fields. In this case, actual information 
on changes during the last period of development of well 
flow rate, formation pressure in them, and coefficients of 
gas, oil, and water saturation of the formation in separate 
operational and observing wells is used.
In this case, for example, the problem of identifying of the 
filtration-capacitive parameters (J) of a formation reduc-
es to the task of minimizing of some objective functional 
of the form:

i

T n 2
i r

i 10

J(k,m) P( x ,t ) P ( t ) dt.
=

 = − ∑∫
where k, m – the required filtration-capacitance parame-
ters: P(xi , t)  - estimated pressure, obtained as a result of 
solving a direct boundary value problem, describing the 
filtration, in the formation: Pr(t) – real (actual) pressure in 
the wells; T – time period of observation; x – coordinates 
of the point at which the pressure measurement is car-
ried out.
In the works of M. Musket, A.M. Meirmanov the problems 
of single-phase filtration are investigated, in the works of 
I.A. Kaliev, S.T. Mukhambetzhanov [13}- two-phase fil-
tration of fluids. The algorithms for solving inverse prob-
lems are based on gradient procedures. In the works 
of N.T.Danaev et al. [14] to minimize the functional are 
used second-order methods.

METHODOLOGY

In this study, an algorithm for solving direct and inverse 
problems of refinement of technological parameters of 
the effective formation and boundary conditions in the 
catchment area boundaries of the well is considered. 
Two approaches to the formulation of inverse prob-
lems on the specification of technological parameters 
of the effective formation and boundary conditions on 
the catchment area boundaries are also explored. Such 
tasks are incorrect. For their solution, iterative algorithms 
are constructed.
If from the beginning of field development in the for-
mation water-drive systems to which they are confined 
presents a natural filtrational flow of water, then it is 
characterized by pressure drop when water moves from 
the catchment area to the discharge area. Certainly, the 
pressures distribution over the area of such a water-drive 
system is entirely determined by the filtration parameters 
of the collectors, the tectonic structure of the water-bear-
ing basin, and the presence of oil and gas deposits [15].
Algorithms for solving inverse problems are based on 
algorithms for solving direct boundary value problems. 
Therefore, the study deals with statements and algo-
rithms for solving both direct and inverse problems of the 
filtration theory.
Consider the formulation of a direct boundary-value 
problem.
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Figure 1: The isobar map and the layout of exploratory 
wells in the heterogeneous by its collecting properties 

water-bearing stratum

Suppose:   G - arbitrary area Rn  with border  Г0   and Г1: 
more precisely:  Гi – is a continuously differentiable man-
ifold of dimensionality n−1 , G is on one side of Гi , i=0,1.
  Suppose A - elliptic differential operator in G of the sec-
ond order:

where:
n

2 2
ij i j 1 1 n

i , j 1

a ( x )TT (T ............ T )α
=

≥ + +∑

1 0α >

3
ija C (G)∈

n

ij
i ji , j 1

UAU (a ( x ) )
x x=

∂ ∂
= −

∂ ∂∑ (1)

(2)

,

Suppose that the boundary Г0=Г2+Г3+Г4. Let assume that 
the function U« A-harmonic» in G, i.е. is a solution of the 
equation AU=0.

Filtration process of water in the heterogeneous by its 
collecting properties water-bearing stratum with an iso-
lated gas (oil) reservoir is described as follows by a dif-
ferential equation of elliptic type relating to the reduced 
pressure P*:

* *P Pk( x,y )h( x,y ) k( x,y ).h( x,y ) 0
x x y y
   ∂ ∂ ∂ ∂

+ =   
∂ ∂ ∂ ∂      

*P 0,
n

∂
=

∂
( x,y )∈

(3)

To solve the direct problem of interest to us, the inte-
gration of equation (1) is carried out under the following 
boundary conditions:

Г1, Г2 ;   (4)

* * * *
c d3 4( x,y ) ;P P const, P P const,( x,y )Γ Γ= = = =∈ ∈Г Г (5)

Thus, for a natural filtrational flow in the water-bear-
ing stratum with a separated gas (oil) reservoir, the 
direct boundary value problem (3) - (5) holds, where -  
P*= P ± ρBgl ; P – pressure at the point with the coor-
dinates x and y; ρB – density of water; g – acceleration 
of gravity; l – vertical distance from the given point with 

coordinates   and   up to datum plane; n – outer to G 
normal; k – coefficient of formation permeability; h – for-
mation thickness; Г1 - the boundary of the gas (oil) de-
posit; Г2 - impermeable boundaries of the water-bearing 
stratum; Г3 – catchment area boundary; Г4 – discharge 
area boundary. (Figure 1.)
Equation (3) describes the process of stationary filtra-
tion. The boundary condition (4) takes into account the 
impermeability of the outer boundaries of the formation 
and the gas, oil deposits (impenetrability for the flow of 
water prior to its development). The condition (5) charac-
terizes the values of the reduced pressures on the catch-
ment and discharge areas boundary.
Experimental and theoretical studies of the motion of 
substances dissolved in a filtered liquid, as well as fil-
tration of mutually dissolving liquids, performed by I.S. 
Aronofsky, I.P. Heller, H.A. Koch, R.L. Slobod, D.V. Von 
Rozenberg, V.K. Gorbanets and A.I. Khaznoferov, P.I. 
Zabrodinym, K.L. Rakovsky and M.D. Rosenberg, V.N. 
Nikolaevsky et al., showed that the process of propaga-
tion of substances dissolved in a filtered liquid in a po-
rous medium occurs with the appearance of a diffusion 
phenomenon.
For a natural filtration flow in an water-bearing stratum 
with a separated gas (oil) reservoir, the direct boundary 
value problem (3) - (5) holds. As a result of solving this 
problem (5) - (7), the distribution of the reduced pres-
sure over the entire area of the water-bearing stratum 
is determined. The formed natural filtration flow of water 
causes the transfer of various components.
The convection-diffusion equation in the case of a flat 
filtration flow has the form [16, 17]:

2 2 2 2
1 1 2 2 1 2 2 1

12 2 2 2
1 2 1 2

v v v vc dc dc dm ( ) ( ) (v c ),
t x dx y dx dxv v v v

λ λ λ λ+ +∂ ∂ ∂
= + −

∂ ∂ ∂+ +

2 2 2 2
1 1 2 2 1 2 2 1

12 2 2 2
1 2 1 2

v v v vc dc dc dm ( ) ( ) (v c ),
t x dx y dx dxv v v v

λ λ λ λ+ +∂ ∂ ∂
= + −

∂ ∂ ∂+ +
(6)

where m - coefficient of porosity; C - concentration of the 
component under consideration; λ1, λ2 - respectively lon-
gitudinal and transverse scattering parameters among 
constants (have the dimensions of length); v1,v2 - the 
components of the filtration rate respectively along   and  
the axes.
If for the equation ∆ϴ

˅
  = 0 we define boundary

C 0,
n

∂
=

∂
( x,y )∈Г2,Г3,Г4;     C=1,    (x,y)( x,y )∈Г1

(7)

and the initial condition
C(x,y)=1,    t=0 (8)
then we obtain a direct boundary value problem for de-
termining the concentration field over the entire area of 
the water-bearing stratum at different times, including at 
the time of calculations (to date)
Points (wells) - information sources are located randomly 
across the entire area of the water-bearing stratum (in 
Figure 2).
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Figure 2: Iso-concentration map and the layout  
of exploratory wells in the water-bearing stratum  

heterogeneous by its collecting properties
The filtration rates  and  depend on the pressure distri-
bution P* over the area. Therefore, in order to solve the 
problem (6) - (8) it is necessary to have a solution of the 
next problem:

( s 1) ( s ) ( s 1) ( s ) ( s 1) ( s 1)
i 1, j i 1, j i , j 1 i , j 1 i , ji , j 1 1 1 1 i , ji , j i , j i , j i , j2 2 2 2

U z[ U b U b U b U b EP ] / T (1 z ) U
+ + + +

+ − + −+ − + −
= + + + − + −

( s 1) ( s ) ( s 1) ( s ) ( s 1) ( s 1)
i 1, j i 1, j i , j 1 i , j 1 i , ji , j 1 1 1 1 i , ji , j i , j i , j i , j2 2 2 2

U z[ U b U b U b U b EP ] / T (1 z ) U
+ + + +

+ − + −+ − + −
= + + + − + − (9)

yN
i 1, j i , j

i , j*
n j 1

U UJ b y,
xP

∆
∆

+

=

−∂
=

∂ ∑ (10)

i=Nx

i=1;

yN
i 1, j i , j

i , j*
p j 1

U UJ b y,
xP

∆
∆

+

=

−∂
=

∂ ∑ (11)

There is no inverse dependence P* from C, therefore, 
the above problems (9) - (11) and (6) - (8) split into two 
autonomous direct boundary-value problems.
Thus, under given collecting properties of the formation 
k and h, λ1, λ2 under boundary conditions, the solution 
of the equation makes it possible to determine the dis-
tribution of the reduced pressure P* over the entire area 
of the water-bearing stratum. Further, under the given 
collecting properties of the water-bearing stratum under 
the initial condition (8) and the boundary conditions (7), 
the solution of equation (6) using the function P* from the 
previous problem allows determining the concentration 
distributions C over the entire area of the aquifer.
Statement of the inverse problem. We assume that the 
actual values P*(x,y) and C(x,y,T) are known over the 
entire area of the water-bearing stratum at the end of 
the time interval [0,T ]  at the present. Have P* and C in 

the wells at the period of geological time T, data on the 
geometry of the formation and approximate values  of its 
collecting properties. It is necessary to determine (spec-
ify) the collecting (filtration-capacitive) properties in all 
points of the water-bearing stratum, as well as the con-
ditions on the catchment and discharge area boundaries 
on the basis of available actual data. We will solve the 
inverse problem as an optimization problem. Construct 
a functional J equal to the sum J1 and J2. Obviously, this 
functional depends on the reservoir properties of the res-
ervoir:

* * * *
1 1c d 2 c d 2 1 2J{ P ,P ,b,m, , } J (P ,P ,b) J (m, , )λ λ λ λ= + =

i i i i

TN N
2 2 2

i est r i i i
i 1

* *
c

i 1
r

0

[(P P ) w (b b ) ] [Cpac C ] dtγ ϕ
= =

= − + − + −∑ ∑∫

i i i i

TN N
2 2 2

i est r i i i
i 1

* *
c

i 1
r

0

[(P P ) w (b b ) ] [Cpac C ] dtγ ϕ
= =

= − + − + −∑ ∑∫ (12)

The inverse problem is as follows: find the values Pc
*, Pd

*,  
b, m, λ1, λ2 which minimize the functional (12).
As a result of solving this problem, the collecting proper-
ties of some equivalent geological model of the formation 
are determined, ensuring the best match of the calculat-
ed and actual values of the reduced pressures, filtration 
parameters and concentrations from the point of view of 
the introduced criterion and the accepted mathematical 
model of filtration.
Method for solving the inverse problem. To minimize the 
functional, we use the iterative gradient method, for ex-
ample, to refine the porosity coefficient at different points 
in the formation, we have the following recurrence rela-
tion

( s )
( s 1) ( s ) ( s )

m
Jm m
m

λ
+ ∂

= −
∂

(13)

where S - iteration number. Similarly, gradient proce-
dures for all other required parameters are written.
As a zero approximation for the values Pc

*, Pd
*, b, m, λ1, λ2 

geological maps, data of geophysical and hydrodynamic 
studies of wells and strata can be used.
To implement gradient type procedures it is necessary to 
be able to calculate the functional derivatives, the deriva-
tion of formulas for which is given below.
Now we turn to the derivation of formulas for the expres-
sions of functional derivatives.
Derivation of expressions for functional derivatives
Let us proceed to the derivation of formulas for the cal-
culation of functional random variables. The required pa-
rameters of the water-bearing stratum are Pc

*, Pd
*, b, m, 

λ1, λ2.
As noted above, the direct problem of finding solutions P* 

and C and splits into two autonomous tasks:
 - the problem of finding a function P* as a solution 

of equation (9), satisfying the boundary conditions 
(10)- (12) 
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 - the problem of finding a function C as a solution of 
equation (6) satisfying the initial condition (8) and the 
boundary conditions (7), using the function P* from 
the previous problem.

To solve the inverse problem, the residual functional is 
chosen in the form (12)
In Section 1 of this study, we considered the inverse 
problem of restoring conditions on the catchment and 
discharge areas boundaries and identifying the filtra-
tion parameters of the water-bearing stratum with the 
criterion of optimization J1. In the same place, formulas  
were obtained for calculating the functional derivatives
                       .

Therefore, we restrict ourselves to deriving formulas for 
calculating the functional derivatives from dJ2 according 
to required parameters. In obtaining expressions for the 
functional derivatives, use the technique given in [18-24]. 
The definition of the derivatives of the functional   
J2(m, λ1, λ2) is based on obtaining the decomposition of 
the variation dJ2 in the independent variations dm, dλ1, 
dλ1 [25-27]. We decompose the variation in independent 
variations.

1 1 1
*
dc

*
J
b

J J, ,
P P
∂ ∂
∂ ∂

∂
∂

2 2 2
2 1 2

1 2

J J JdJ dm d d ,
m

λ λ
λ λ

∂ ∂ ∂
= + +
∂ ∂ ∂

(14)

Coefficients with independent variations and will repre-
sent the desired functional derivatives according to re-
fined parameters.
We use the property of the Dirac delta function and write 
the expression for the discrepancy ɛi

i i
G

C( x,y ,T )dG Cε ϕ= −∫ (15)

where  ∫
G
C(x, y, T)dG=Cppai(T) - the calculated concen-

tration corresponding to the locations of the i - th well at 
the time point; T; ɛi - the discrepancy between the cal-
culated and actual concentrations in the i - th well at the 
time point T.
Since the calculated concentrations in the wells are the 
result of the solution of the problem (6) - (8) for the spec-
ification of (known) parameters m, λ1, λ2, then the value   
ɛi  depends on these parameters.
As noted above, the minimum of the following function-
al of the total quadratic residual, calculated and actual 
concentrations, is taken as the optimization criterion for 
finding the parameters of the water-bearing stratum 
(m, λ1, λ2):

T N

2 1, 2 i i
i 10

J (m, ) dt,λ λ γ ε
=

= ∑∫ (16)

where  γi - weight function (multiplier).
Let us write down the expression for dJ2, using formulas 

*(0 ) (1) (1) ( n ) ( n )(0 ) (0 ) (1) ( n )
* * * * *

dc c d c dJ(P , P , b ) J(P P ,b) ............... J(P ,P , b )> > >
expression and (15) 

The validity of the equality obtained follows from the fact 
that the variation from the actual concentration is zero.
We reverse summation and integration. As a result, the 
expression under integral sign will have a factor

TN

2 i
G

i 1 0

dJ 2 C( x,y ) dGdt.ε δ δ
=

= ∑∫∫ (17)

N

i i
i 1

2  γ ε δ
=
∑ (18)

We introduce the following boundary-value problem, 
which is called conjugate, with respect to the function 
(conjugate function). This function can be interpreted as 
a result of a perturbation caused by the action of point 
sources of runoff from the density of selection of which is 
proportional to ɛi [29, 30].
Thus, it is required to solve the adjoint differential equa-
tion

n2 2 2 2
1 1 2 2 1 2 2 1

1 i i2 2 2 2
i 11 2 1 2

v v v vU c U U( ) ( ) (v U ) m 2
x x y x y x tv v v v

λ λ λ λ γ ε δ
=

+ +∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂+ +
∑

n2 2 2 2
1 1 2 2 1 2 2 1

1 i i2 2 2 2
i 11 2 1 2

v v v vU c U U( ) ( ) (v U ) m 2
x x y x y x tv v v v

λ λ λ λ γ ε δ
=

+ +∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂+ +
∑ (19)

under the following boundary and initial conditions:

2 3 4 1
U 0,( x,y ) , , ;U 0,( x,y )
n

Γ Γ Γ Γ∂
= ∈ = ∈

∂
Г Г Г Г (20)

U( x,y ,t ) 0,= t = T (21)
Substituting the expression for the right-hand side of (19) 
in (21), we obtain:

T 2 2
1 1 2 2

2 2 2
1 20 G

v UdJ [
x x

λν λ

ν ν

 +∂ ∂ = + +
 ∂ ∂+ 

∫ ∫
2 2

1 2 2 1
12 2

1 2

v v dc U U( ) (v U ) m ] C( x,y ,t )]dGdt
y dx y x tv v

λ λ δ+∂ ∂ ∂ ∂
+ − + +
∂ ∂ ∂ ∂+

2 2
1 2 2 1

12 2
1 2

v v dc U U( ) (v U ) m ] C( x,y ,t )]dGdt
y dx y x tv v

λ λ δ+∂ ∂ ∂ ∂
+ − + +
∂ ∂ ∂ ∂+

(22)

Further transformations (22) require the representation 
of the derivatives with respect to the spatial and temporal 
coordinates of the variation δC(x, y, t) through the varia-
tions of the sought-for parameters dm, dλ1, λ2. Therefore, 
it is necessary to vary equation (4), have

2 2 2 2
1 1 2 2 1 2 2 1

12 2 2 2
1 2 1 2

v v v v( C ) ( C ) ( C ) c( ) ( ) (v C ) m m
x x y y x t tv v v v

λ λ λ λδ δ δδ δ+ +∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂+ +
2 2 2 2

1 1 2 2 1 2 2 1
12 2 2 2

1 2 1 2

v v v v( C ) ( C ) ( C ) c( ) ( ) (v C ) m m
x x y y x t tv v v v

λ λ λ λδ δ δδ δ+ +∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂+ +

2 2 2 2
1 1 2 2 1 2 2 1

2 2 2 2
1 2 1 2

v v v vC C( ) ( )
x x y yv v v v

δλ δλ δλ δλ+ +∂ ∂ ∂ ∂
− +
∂ ∂ ∂ ∂+ +

2 2 2 2
1 1 2 2 1 2 2 1

2 2 2 2
1 2 1 2

v v v vC C( ) ( )
x x y yv v v v

δλ δλ δλ δλ+ +∂ ∂ ∂ ∂
− +
∂ ∂ ∂ ∂+ +

(23)
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When the equations (6) are varied, neglecting terms of 
higher than the first order of smallness relating to varia-
tion.
Variations of the initial and boundary conditions (7), (8) 
have the form

2 3 4 1
( C ) 0,( x,y ) , , ; C 0, ( x,y )

n
δ Γ Γ Γ δ Γ∂

= ∈ = ∈
∂

(24)

C( x,y ,t ) 0, t 0δ = = (25)

Since the first and second terms on the right-hand side 
of (25) are of the same form, the detailed calculations 
are carried out only for the first term. This term is twice 
integrable by parts

b
b

h

yT T2 2 2 2
x1 1 2 2 1 1 2 2
x2 2 2 2

1 2 1 20 G 0 y

v v v vU U( ) CdGdt. [ ( C dy
x x xv v v v

λ λ λ λδ δ+ +∂ ∂ ∂
= +

∂ ∂ ∂+ +∫ ∫ ∫ ∫
b

b

h

yT T2 2 2 2
x1 1 2 2 1 1 2 2
x2 2 2 2

1 2 1 20 G 0 y

v v v vU U( ) CdGdt. [ ( C dy
x x xv v v v

λ λ λ λδ δ+ +∂ ∂ ∂
= +

∂ ∂ ∂+ +∫ ∫ ∫ ∫

} ]
bT2 2 2 2

1 2 2 2 1 1 2 2
2 2 2 2
1 2 1 2G 0 y

( Cv v v vU U ( C )( C ct [ dGdt
x x x xv v v v

δλ λ λ λ δδ
∂+ +∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂+ +∫ ∫ ∫

} ]
bT2 2 2 2

1 2 2 2 1 1 2 2
2 2 2 2
1 2 1 2G 0 y

( Cv v v vU U ( C )( C ct [ dGdt
x x x xv v v v

δλ λ λ λ δδ
∂+ +∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂+ +∫ ∫ ∫ (26)

Here the indexes "h" and "b" denote the lower and up-
per limits of the integration region along the correspond-
ing coordinate. By condition (25), the first term in (26) is 
equal to zero. Consequently

bb
b

h

h

yT T2 2 2 2
x1 1 2 2 1 1 2 2
x2 2 2 2

1 2 1 20 G 0 y

v v v vU ( C ) ( C )dGdt [ ( U dy
x x xv v v v

λ λ λ λδ δ+ +∂ ∂ ∂
− = − −

∂ ∂ ∂+ +∫ ∫ ∫ ∫
bb

b

h

h

yT T2 2 2 2
x1 1 2 2 1 1 2 2
x2 2 2 2

1 2 1 20 G 0 y

v v v vU ( C ) ( C )dGdt [ ( U dy
x x xv v v v

λ λ λ λδ δ+ +∂ ∂ ∂
− = − −

∂ ∂ ∂+ +∫ ∫ ∫ ∫
bT2 2 2 2

1 2 2 2 1 1 2 2
2 2 2 2
1 2 1 2G 0 G

v v v v( C ) ( C )U )dG]dt U ( dGdt.
x x x xv v v v

λ λ λ λδ δ+ +∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂+ +∫ ∫ ∫
bT2 2 2 2

1 2 2 2 1 1 2 2
2 2 2 2
1 2 1 2G 0 G

v v v v( C ) ( C )U )dG]dt U ( dGdt.
x x x xv v v v

λ λ λ λδ δ+ +∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂+ +∫ ∫ ∫ (27)

Due to condition (24), the first term in (27) is equal to 
zero. We transform the third term on the right-hand side 
of (22):

( )
b

b

h

yT T T
x

1 1 x 1 1
0 G 0 y G 0 G

v U CdGdt [ v U C dy U (v C )dG]dt U (v C )dGdt
x x x

δ δ δ δ∂ ∂ ∂
= − = −

∂ ∂ ∂∫ ∫ ∫ ∫ ∫ ∫ ∫

( )
b

b

h

yT T T
x

1 1 x 1 1
0 G 0 y G 0 G

v U CdGdt [ v U C dy U (v C )dG]dt U (v C )dGdt
x x x

δ δ δ δ∂ ∂ ∂
= − = −

∂ ∂ ∂∫ ∫ ∫ ∫ ∫ ∫ ∫ (28)

Because of conditions (21) and (23), the first term in (28) 
is equal to zero.
Now we transform the fourth term of the right-hand side 
of (21):

T T T
T
0

0 G G 0 0 G

U ( C ) ( C )m CdGdt [ mU C mU dt ]dG mU dGdt
t t t

δ δδ δ∂ ∂ ∂
= − = −

∂ ∂ ∂∫ ∫ ∫ ∫ ∫ ∫
T T T

T
0

0 G G 0 0 G

U ( C ) ( C )m CdGdt [ mU C mU dt ]dG mU dGdt
t t t

δ δδ δ∂ ∂ ∂
= − = −

∂ ∂ ∂∫ ∫ ∫ ∫ ∫ ∫ (29)

Due to (21) and (23) the first term on the right-hand side 
of (29) is zero. Thus, taking into account the transforma-
tions carried out, expression (22) is transformed to the 
following form:

T 2 2 2 2
1 1 2 2 1 2 2 1

2 12 2 2 2
1 2 1 20 G

v v( C ) c ( C ) ( C )dJ U[ ( ) ) (v C )m ]dGdt
x x y x y x tv v

λν λ ν λ λδ δ δδ
ν ν

 + +∂ ∂ ∂ ∂ ∂ ∂ ∂ = + +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + 

∫ ∫
T 2 2 2 2

1 1 2 2 1 2 2 1
2 12 2 2 2

1 2 1 20 G

v v( C ) c ( C ) ( C )dJ U[ ( ) ) (v C )m ]dGdt
x x y x y x tv v

λν λ ν λ λδ δ δδ
ν ν

 + +∂ ∂ ∂ ∂ ∂ ∂ ∂ = + +
 ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + 

∫ ∫

or by reason of equality (23) to the form

T 2 2 2 2
1 1 2 2 1 2 2 1

2 2 2 2 2
1 2 1 20 G

v v v vC C ( C ) CdJ [ dm ( ) ) ( )]UdGdt
t x x y y yv v v v

δλ δλ δλ δλδ+ +∂ ∂ ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂ ∂ ∂+ +∫ ∫
T 2 2 2 2

1 1 2 2 1 2 2 1
2 2 2 2 2

1 2 1 20 G

v v v vC C ( C ) CdJ [ dm ( ) ) ( )]UdGdt
t x x y y yv v v v

δλ δλ δλ δλδ+ +∂ ∂ ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂ ∂ ∂+ +∫ ∫ (30)

Expanding the brackets under the integral, we integrate 
by parts the second and third terms on the right-hand 
side of (30):

T 2 2 2 2
1 1 2 2 1 2 2 1

2 2 2 2 2
1 2 1 20 G

v v v vC C ( C ) CdJ [ dm ( ) ) ( )]UdGdt
t x x y y yv v v v

δλ δλ δλ δλδ+ +∂ ∂ ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂ ∂ ∂+ +∫ ∫
T 2 2 2 2

1 1 2 2 1 2 2 1
2 2 2 2 2

1 2 1 20 G

v v v vC C ( C ) CdJ [ dm ( ) ) ( )]UdGdt
t x x y y yv v v v

δλ δλ δλ δλδ+ +∂ ∂ ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂ ∂ ∂+ +∫ ∫ (31)

By condition (7), the first term on the right-hand side of 
(26) is equal to zero. As a result, we obtain from the ex-
pression (30) the following

T T T2 2 2 2
1 2 2 1

2 1 22 2 2 2 2 2 2 2
1 2 1 2 1 2 1 20 G 0 G 0 G

v v v vC C U C U C U C UdJ [ U dGdt ]dm [ dGdt ]d [ dGdt ]d
t x x y y x x y yv v v v v v v v

λ λ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +∫ ∫ ∫ ∫ ∫ ∫
T T T2 2 2 2

1 2 2 1
2 1 22 2 2 2 2 2 2 2

1 2 1 2 1 2 1 20 G 0 G 0 G

v v v vC C U C U C U C UdJ [ U dGdt ]dm [ dGdt ]d [ dGdt ]d
t x x y y x x y yv v v v v v v v

λ λ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +∫ ∫ ∫ ∫ ∫ ∫
T T T2 2 2 2

1 2 2 1
2 1 22 2 2 2 2 2 2 2

1 2 1 2 1 2 1 20 G 0 G 0 G

v v v vC C U C U C U C UdJ [ U dGdt ]dm [ dGdt ]d [ dGdt ]d
t x x y y x x y yv v v v v v v v

λ λ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +∫ ∫ ∫ ∫ ∫ ∫

(32)
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Comparing (14) and (32) we have the following expres-
sions for functional derivatives with respect to indepen-
dent parameters:

T
2

0 G

J CU dGdt
m t

∂ ∂
=

∂ ∂∫ ∫ (33)

T 2 2
2 1 2

2 2 2 21 1 2 1 20 G

J v vC U C U[ ]dGdt
x x y yv v v vλ

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂+ +∫ ∫ (34)

T 2 2
2 2 1

2 2 2 22 1 2 1 20 G

J v vC U C U[ ]dGdt
x x y yv v v vλ

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂+ +∫ ∫ (35)

RESULTS AND DISCUSSION

The table shows the distributions of P0
*, P3, P9, P24 and Pa

* 
by wells, illustrates the change in the values of reduced 
pressures on the contours of the supply and unloading 
areas, as well as the values of the target functional  , 
depending on the number of iterations when solving the 
inverse problem.
Average convergence is achieved after 14 iterations, 
and the solutions at the nodes corresponding to the wells 

have a small error. Studies of the problem of identify-
ing filtration parameters and restoring conditions on the 
contours of the supply and discharge areas showed the 
following main conclusions:
1. When applying the gradient descent method with 

step splitting, there is a rapid convergence to the 
exact solution on the average. As the number of it-
erations increases, the solution converges exactly 
uniformly.

2. The solution of the problem does not significantly de-
pend on the errors of measurements of the reduced 
pressures and the filtration parameter on the wells, 
and if these errors are random, then the conver-
gence on average and uniform convergence across 
the wells is preserved.

It can be concluded that if the model used corresponds to 
the object under study, then the optimization formulation 
of the identification and restoration problem is adequate: 
with a decrease in the residual functional of the calcu-
lated and measured reduced pressures and filtration 
parameters in the wells, the obtained distributions b are 
approximated to the true ones, as well as the conditions 
on the contours of the regions supply and unloading.

Iteration 
Number PС Pd J Iteration 

Number PС Pd J

1 35.0000 24.0000 1125.22 1 35.0000 24.0000 838.67
2 34.1913 23.5097 828.92 2 34.1935 23.5112 614.01
3 33.5121 23.1245 613.94 3 33.5144 23.1270 454.17
4 32.9408 22.8242 456.74 4 32.9415 22.8275 339.49
5 32.4600 22.5923 341.12 5 32.4572 22.5959 256.50
6 32.0545 22.4148 255.47 6 32.0468 22.4192 196.03
7 31.7122 22.2808 191.50 7 31.6982 22.2863 151.39
8 31.4231 22.1814 143.40 8 31.4016 22.1884 118.20
9 31.1792 22.1096 108.38 9 31.1486 22.1183 93.19

10 30.9693 22.0566 80.92 10 30.9326 22.0703 74.23
11 30.7927 22.0213 60.87 11 30.7477 22.0394 58.86
12 30.6405 21.9967 44.81 12 30.5895 22.0220 46.32
13 30.5136 21.9837 32.56 13 30.4540 22.0149 35.93
14 30.4088 21.9797 24.45 14 30.3383 22.0153 27.30
15 30.3137 21.9756 17.11 15 30.2400 22.0186 20.49
16 30.2369 27.9769 12.08 16 30.1567 22.0241 15.56
17 30.1714 21.9789 8.30 17 30.0829 22.0300 11.54
18 30.1161 21.9815 5.26 18 30.0182 22.0359 7.97
19 30.0745 21.9861 3.43 19 29.9665 22.0435 5.30
20 30.0405 21.9908 2.04 20 29.9273 22.0524 3.75
21 30.0175 21.9969 1.35 21 29.8907 22.0591 2.06
22 29.9966 22.0028 0.88 22 29.8648 22.0659 0.91
23 29.9777 22.0083 0.56 23 29.8515 22.0728 0.43
24 29.9615 22.0132 0.40 24 29.8435 22.0783 0.22

Table 1: The change in the values and the values of the objective functional depending on the 
number of iterations in solving the inverse problem
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The above research results should not be absolutized, 
since they relate to well-defined initial data, to a specific 
number of wells - sources of information and their place-
ment in the area. Nevertheless, they qualitatively fully 
reflect the features of the solutions of the studied inverse 
problems. And most importantly, the performed mathe-
matical experiments quite convincingly, from our point of 
view, traced the practical suitability of the proposed for-
mulations and algorithms for solving the corresponding 
inverse problems.
Studies of the problem of identifying filtration parameters 
and restoring conditions on the contours of the supply 
and discharge areas showed the following main conclu-
sions.
1. When applying the gradient descent method with 

step splitting, there is a rapid convergence to the 
exact solution on the average. As the number of it-
erations increases, the solution converges exactly 
uniformly.

2. The solution of the problem does not significantly de-
pend on the errors of measurements of the reduced 
pressures and the filtration parameter on the wells, 
and if these errors are random, then the conver-
gence on average and uniform convergence across 
the wells is preserved.

It can be concluded that if the model used corresponds to 
the object under study, then the optimization formulation 
of the identification and restoration problem is adequate: 
with a decrease in the residual functional of the calcu-
lated and measured reduced pressures and filtration 
parameters in the wells, the obtained distributions b are 
approximated to the true ones, as well as the conditions 
on the contours of the regions supply and unloading. 

The above research results should not be absolutized, 
since they relate to well-defined initial data, to a specific 
number of wells - sources of information and their loca-
tion on the area. Nevertheless, they qualitatively fully re-
flect the features of the solutions of the studied inverse 
problems. And most importantly, the performed mathe-
matical experiments quite convincingly, from our point of 
view, traced the practical suitability of the proposed for-
mulations and algorithms for solving the corresponding 
inverse problems. 
The use of the obtained formulas for functional deriva-
tives in the procedure of the gradient method of minimiz-
ing the residual functional makes it possible to refine the 
collecting properties of the formation.
The convergence by functionals and convergence of re-
duced pressures on the contours of the discharge supply 
areas to the actual ones depending on the number of 
iterations when solving the inverse problem.
Table 1 illustrates the change in the values of the re-
duced pressures on the catchment and discharge areas 
boundaries, as well as the values of the objective func-
tional   depending on the number of iterations in solving 
the inverse problem (also Figure 3).
Table 2 shows the convergence by the functionals  and  
and the convergence of the capacitive parameters to 
the actual one, depending on the number of iterations in 
solving the inverse problem (also visualized in Figure 4).
The convergence by the functionals and the conver-
gence of the capacitive parameters to the actual one, 
depending on the number of iterations in solving the in-
verse problem.
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Figure 3: The impact of the number of iterations when solving  
the inverse problem
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Iteration 
number m J2 J Iteration 

number m J2 J

1 1.0000 38.1372 444.83 1 1.5000 44.6142 451.10
2 0.9645 39.5578 345.80 2 1.4211 45.1973 351.42
3 0.9309 40.9089 265.39 3 1.3438 45.7435 270.22
4 0.8991 41.9977 200.36 4 1.2680 46.1575 204.52
5 0.8689 42.6758 149.64 5 1.1925 46.4474 153.21
6 0.8399 43.5912 112.10 6 1.1157 46.6270 115.15
7 0.8119 44.2864 83.79 7 1.0360 46.7591 86.25
8 0.7850 44.5489 64.94 8 0.9518 46.5029 66.89
9 0.7582 45.3890 52.46 9 0.08562 46.5466 53.62

10 0.7331 48.2365 48.40 10 0.7504 48.3765 48.55
11 0.7161 45.8002 48.07 11 0.6838 45.3221 47.60
12 0.6857 46.1512 46.76 12 0.5808 44.3479 44.96
13 0.6527 47.4741 47.66 13 0.4709 44.1643 44.35
14 0.6222 45.4419 45.87 14 0.3586 35.9937 36.43
15 0.5731 45.1268 45.33 15 0.1466 5.7585 5.97
16 0.5111 43.7017 43.81 16 0.1212 1.1974 1.30
17 0.4210 41.6976 41.73 17 0.1086 0.4233 0.45
18 0.3723 39.1174 39.14 18 0.0993 0.0470 0.07
19 0.2994 33.9184 33.94 19 0.1029 0.0344 0.06
20 0.1697 13.3323 13.35 20 0.1005 0.0094 0.03
21 0.1434 6.9516 6.97 21 0.1014 0.0113 0.03
22 0.1132 0.8680 0.89 22 0.1012 0.0102 0.03
23 0.0963 0.1754 0.20 23 0.1013 0.0107 0.03
24 0.1072 0.2418 0.26

Table 2: The convergence depending on the number of iterations in solving the inverse problem

Iteration Number

Le
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l o
f c
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en

ce

m J2 J

CONCLUSION

Let us formulate the conclusions concerning the proper-
ties of the numerical solution of the problem of identify-
ing capacitive parameters. The solution of the problem 
of identifying capacitive parameters does not essentially 
depend on the choice of the initial approximation. There 

is rapid convergence to an exact solution. It is possible 
to draw the following conclusion: when the objective 
functional of the residual of the calculated and measured 
concentrations in the wells decreases, the approximation 
obtained   to the true takes place.

Figure 4: The impact of the number of iterations in solving the inverse problem
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